The Global Structure and Evolution of a Self-Gravitating Multi-phase Interstellar Medium in a Galactic Disk

نویسنده

  • Keiichi Wada
چکیده

Using high resolution, two-dimensional hydrodynamical simulations, we investigate the evolution of a self-gravitating multi-phase interstellar medium in the central kiloparsec region of a galactic disk. We find that a gravitationally and thermally unstable disk evolves, in a self-stabilizing manner, into a globally quasi-stable disk that consists of cold (T < 100 K), dense clumps and filaments surrounded by hot (T > 10 K), diffuse medium. The quasi-stationary, filamentary structure of the cold gas is remarkable. The hot gas, characterized by low-density holes and voids, is produced by shock heating. The shocks derive their energy from differential rotation and gravitational perturbations due to the formation of cold dense clumps. In the quasi-stable phase where cold and dense clouds are formed, the effective stability parameter, Q, has a value in the range 2-5. The dynamic range of our multi-phase calculations is 10 − 10 in both density and temperature. Phase diagrams for this turbulent medium are analyzed and discussed. Subject headings: ISM: structure, kinematics and dynamics — galaxies: structure — method: numerical

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local stability criterion for self-gravitating disks in modified gravity

We study local stability of self-gravitating fluid and stellar disk in the context of modified gravity theories which predict a Yukawa-like term in the gravitational potential of a point mass. We investigate the effect of such a Yukawa-like term on the dynamics of self-gravitating disks. More specifically, we investigate the consequences of the presence of this term for the local stability of t...

متن کامل

Galactic Disk Formation and the Angular Momentum Problem

Galactic disk formation requires knowledge about the initial conditions under which disk galaxies form, the boundary conditions that affect their secular evolution and the micro-physical processes that drive the multi-phase interstellar medium and regulate their star formation history. Most of these ingredients are still poorly understood. Recent high-resolution observations of young high-redsh...

متن کامل

Magnetorotationally-Driven Galactic Turbulence and the Formation of Giant Molecular Clouds

Giant molecular clouds (GMCs), where most stars form, may originate from self-gravitating instabilities in the interstellar medium. Using local threedimensional magnetohydrodynamic simulations, we investigate ways in which galactic turbulence associated with the magnetorotational instability (MRI) may influence the formation and properties of these massive, self-gravitating clouds. Our disk mod...

متن کامل

The Challenge of Modelling Galactic Disks

Detailed models of galactic disk formation and evolution require knowledge about the initial conditions under which disk galaxies form, the boundary conditions that affect their secular evolution and the micro-physical processes that drive the multi-phase interstellar medium and regulate the star formation history. Unfortunately, up to now, most of these ingredients are still poorly understood....

متن کامل

Evolution of self-gravitating magnetized disks. I- Axisymmetric simulations

In this paper and a companion work, we report on the first global numerical simulations of self-gravitating magnetized tori, subject in particular to the influence of the magnetorotational instability (MRI). In this work, paper I, we restrict our calculations to the study of the axisymmetric evolution of such tori. Our goals are twofold: (1) to investigate how self-gravity influences the global...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999